Kinetic Analysis of Anaerobic Digestion of Rice Husk for Prediction of Methane Yield

Analisis Kinetika Pencernaan Anaerobik Sekam Padi untuk Prediksi Hasil Metana

Authors

  • Lukhi Mulia Shitophyta Universitas Ahmad Dahlan http://orcid.org/0000-0003-3434-1893
  • Nidha Amalia Nurillah Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
  • Evi Agustina Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
  • Siwi Purwanti Department of Primary School Teacher Education, Faculty of Teacher Training and Education, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
  • Meilya Suzan Triyastuti Department of Fishery Product Processing Techniques, Politeknik Kelautan dan Perikanan Bitung, Bitung, Indonesia

DOI:

https://doi.org/10.21776/ub.rbaet.2023.007.02.05

Keywords:

anaerobic digestion, kinetic, methane, rice husk

Abstract

A study of three kinetic models for predicting methane yield was performed. The selected models for predicting methane yield were first-order, modified Gompertz and Monod models. Anaerobic digestion of rice husk was simulated using the selected models.  A comparative evaluation of the models was undertaken to determine the best-fit model. All models obtained an accuracy of predicted methane yield of over 0.9. The prediction of methane yield on rice husk has the most accurate model being the modified Gompertz with the least deviation of 7.37% and the least accurate model being the Monod model with the highest deviation of 20.39%. 

References

Achinas, S., Jan, G., & Euverink, W. (2016). Theoretical analysis of biogas potential prediction from agricultural waste. Resource-Efficient Technologies, 2(3), 143–147.

Achinas, S., Li, Y., Achinas, V., & Euverink, G. J. W. (2019). Biogas potential from the anaerobic digestion of potato peels : process performance and kinetics evaluation. Energies, 12(2311), 1–16.

Jaman, K., Amir, N., Musa, M. A., Zainal, A., Yahya, L., Wahab, A. M. A., Suhartini, S., Marzuki, T. N. T. M., Harun, R., & Idrus, S. (2022). Anaerobic Digestion, Codigestion of Food Waste, and Chicken Dung: Correlation of Kinetic Parameters with Digester Performance and On-Farm Electrical Energy Generation Potential. Fermentation, 8(1). https://doi.org/10.3390/fermentation8010028

Jierula, A., Wang, S., Oh, T. M., & Wang, P. (2021). Study on accuracy metrics for evaluating the predictions of damage locations in deep piles using artificial neural networks with acoustic emission data. Applied Sciences (Switzerland), 11(5), 1–21. https://doi.org/10.3390/app11052314

Jijai, S., Muleng, S., Noynoo, L., & Siripatana, C. (2020). Kinetic model of biogas production from co-digestion of Thai rice noodle wastewater with rice husk and different type of manure with ash supplement. IOP Conference Series: Earth and Environmental Science, 463(1). https://doi.org/10.1088/17551315/463/1/012008

Khadka, A., Parajuli, A., Dangol, S., Thapa, B., Sapkota, L., Carmona-Martínez, A. A., & Ghimire, A. (2022). Effect of the Substrate to Inoculum Ratios on the Kinetics of Biogas Production during the Mesophilic Anaerobic Digestion of Food Waste. Energies, 15(3), 1–16. https://doi.org/10.3390/en15030834

Kim, S., Alizamir, M., Zounemat-Kermani, M., Kisi, O., & Singh, V. P. (2020). Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea. Journal of Environmental Management, 270(February), 110834.https://doi.org/10.1016/j.jenvman.2020.110834

Majeed, A., & Malik, S. R. (2018). Enhancement of Biogas Production by Co-Digestion of Fruit and Vegetable Waste with Cow Dung and Kinetic Modeling. International Research Journal of Engineering and Technology, 5(12), 1238–1246.

Marañón, E., Negral, L., Suárez-Peña, B., Fernández-Nava, Y., Ormaechea, P., Díaz-Caneja, P., & Castrillón, L. (2021). Evaluation of the Methane Potential and Kinetics of Supermarket Food Waste. Waste and Biomass Valorization, 12(4), 1829–1843. https://doi.org/10.1007/s12649-020-01131-0

Mohammed, I. S., Aliyu, M., Abdullahi, N. A., & Alhaji, I. A. (2020). Production of bioenergy from rice-melon husk co-digested with COW dung as inoculant. Agricultural Engineering International: CIGR Journal, 22(1), 108–117.

Moharir, S., Bondre, A., Vaidya, S., Patankar, P., Kanaskar, Y., & Karne, H. (2020). Comparative Analysis of the Amount of Biogas Produced by Different Cultures using the Modified Gompertz Model and Logistic Model. European Journal of Sustainable Development Research, 4(4), em0141. https://doi.org/10.29333/ejosdr/8550

Nguyen, T. H., Nguyen, M. K., Le, T. H. O., Bui, T. T., Nguyen, T. H., Nguyen, T. Q., & Ngo, A. Van. (2021). Kinetics of Organic Biodegradation and Biogas Production in the Pilot-Scale Moving Bed Biofilm Reactor (MBBR) for Piggery Wastewater Treatment. Journal of Analytical Methods in Chemistry, 2021(2021),1–9. https://doi.org/10.1155/2021/6641796

Nielfa, A., Cano, R., & Fdz-Polanco, M. (2015). Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnology Reports, 5(1), 14–21. https://doi.org/10.1016/j.btre.2014.10.005

Okonkwo, U. C., Onokpite, E., & Onokwai, A. O. (2018). Comparative study of the optimal ratio of biogas production from various organic wastes and weeds for digester/restarted digester. Journal of King Saud University - Engineering Sciences, 30(2),123–129. https://doi.org/10.1016/j.jksues.2016.02.002

Oyejide, J. O., Orhorhoro, E. K., & Atadious, D. (2018). Mathematical Modeling Of Biogas Yield From Anaerobic Co- Digestion Of Organic Waste And Pig Dung. International Journal of Engineering Science Invention, 7(5), 30–38.

Park, J., Lee, B., Jo, S., Lee, J., Jun, H., Park, J., Jo, S., & Lee, J. (2018). Control of accumulated volatile fatty acids by recycling nitrified effluent. Journal of Environmental Health Science and Engineering, 16(1), 19–25.

Pečar, D., & Goršek, A. (2020). Kinetics of methane production during anaerobic digestion of chicken manure with sawdust and miscanthus. Biomass and Bioenergy, 143,1–7. https://doi.org/10.1016/j.biombioe.2020.105820

Postawa, K., Szczygieł, J., & Kułażyński, M. (2021). Innovations in anaerobic digestion: a model-based study. Biotechnology for Biofuels,14(1),1–11. https://doi.org/10.1186/s13068-020-01864-z

Roberts, S., Mathaka, N., Zeleke, M. A., & Nwaigwe, K. N. (2023). Comparative Analysis of Five Kinetic Models for Prediction of Methane Yield. Journal of The Institution of Engineers (India): Series A, 104(2),335–342. https://doi.org/10.1007/s40030-023-00715-y

Shitophyta, L. M., Arnita, A., Dyah, H., & Wulansari, A. (2023). Evaluation and modelling of biogas production from batch anaerobic digestion of corn stover with oxalic acid. Research in Agricultural Engineering, 69(3),151–157. https://doi.org/10.17221/98/2022-RAE

Shitophyta, L. M., Budiarti, G. I., Nugroho, Y. E., & Fajariyanto, D. (2020). Biogas Production from Corn Stover by Solid-State Anaerobic Co-digestion of Food Waste. Jurnal Teknik Kimia Dan Lingkungan, 4(1), 44–52.

Shyan, L. L., Suliani, N., Nanyan, M., Ismail, N., Al-gheethi, A., & Nguyen, H. T. (2023). Effort to Mitigate Volatile Fatty Acid Inhibition by Using Mixed Inoculum and Compost for the Degradation of Food Waste and the Production of Biogas. Sustainability, 15(1185),1–15. https://doi.org/https://doi.org/10.3390/ su15021185

Ulukardesler, A. H. (2023). Anaerobic co-digestion of grass and cow manure: kinetic and GHG calculations. Scientific Reports,13(1),1–9. https://doi.org/10.1038/s41598-023-33169-0

Downloads

Published

2023-10-31

How to Cite

Shitophyta, L. M., Nurillah, N. A., Agustina, E., Purwanti, S., & Triyastuti, M. S. (2023). Kinetic Analysis of Anaerobic Digestion of Rice Husk for Prediction of Methane Yield: Analisis Kinetika Pencernaan Anaerobik Sekam Padi untuk Prediksi Hasil Metana. Jurnal Rekayasa Bahan Alam Dan Energi Berkelanjutan, 7(2), 33–38. https://doi.org/10.21776/ub.rbaet.2023.007.02.05

Issue

Section

Articles